
U.S. immigration westernizes the human gut microbiome

Pajau Vangay1, Abigail J. Johnson2, Tonya L. Ward2, Gabriel A. Al-Ghalith1, Robin R. 
Shields-Cutler2, Benjamin M. Hillmann3, Sarah K. Lucas4, Lalit K. Beura4, Emily A. 
Thompson4, Lisa M. Till5, Rodolfo Batres6, Bwei Paw6, Shannon L. Pergament6, Pimpanitta 
Saenyakul6, Mary Xiong6, Austin D. Kim7, Grant Kim8, David Masopust4, Eric C. Martens9, 
Chaisiri Angkurawaranon10, Rose McGready11,12, Purna C. Kashyap5, Kathleen A. 
Culhane-Pera6, and Dan Knights1,2,3,*

1Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, 
Minnesota, 55455, United States 2Biotechnology Institute, University of Minnesota, Minneapolis, 
Minnesota, 55455, United States 3Department of Computer Science and Engineering, University 
of Minnesota, Minneapolis, Minnesota, 55455, United States 4Center for Immunology, Department 
of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, 55455, United 
States 5Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo 
Clinic, Rochester, Minnesota, 55902, United States 6Somali, Latino, and Hmong Partnership for 
Health and Wellness, West Side Community Health Services, St. Paul, Minnesota, 55106, United 
States 7Department of Mathematics, Statistics, and Computer Science, Macalester College, St. 
Paul, Minnesota, 55105, United States 8College of Biological Sciences, University of Minnesota, 
Minneapolis, Minnesota, 55455, United States 9Department of Microbiology & Immunology, 
University of Michigan, Ann Arbor, Michigan, 48109, United States 10Department of Family 
Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai,, 50200, Thailand 11Shoklo 
Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical 
Medicine, Mahidol University, 63110 Mae Sot, Thailand 12Centre for Tropical Medicine and Global 
Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 
7BN, United Kingdom

*Correspondence and Lead Contact: dknights@umn.edu.
Author Contributions
Conceptualization, P.V., K.C.P, and D.K. Methodology, P.V., K.C.P, R.B., S.P., C.A., T.W., L.T., L.B., S.L., R.H., D.M, R.M., P.K., and 
D.K. Software, G.A., B.H., and A.K. Formal Analysis, P.V., R.S.-C., and A.J.J. Investigation, C.A., R.M., P.V., B.P., P.S., and M.X. 
Data Curation, G.K. Writing - Original Draft, P.V. and D.K. Writing - Review and Editing, K.C.P, S.P., C.A., L.B., S.L., R.H., D.M, 
P.K., R.S.-C., P.V. and D.K. Visualization, P.V., R.S.-C., A.J.J. Supervision, D.K, K.C.P, and S.P. Project Administration, P.V. Funding 
Acquisition: P.V. and D.K.

Declaration of Interests
D.K. serves as CEO and holds equity in CoreBiome, a company involved in the commercialization of microbiome analysis. The 
University of Minnesota also has financial interests in CoreBiome under the terms of a license agreement with CoreBiome. These 
interests have been reviewed and managed by the University of Minnesota in accordance with its Conflict-of-Interest policies.

DATA AND SOFTWARE AVAILABILITY
Software
Software used to perform statistical testing and generate figures for this manuscript are available here: https://github.com/knights-lab/
IMP_analyses.
Data Resources
The 16S rRNA gene and shotgun metagenomic sequencing data have been deposited in the European Nucleotide Archive under 
accession number PRJEB28687.

HHS Public Access
Author manuscript
Cell. Author manuscript; available in PMC 2019 May 03.

Published in final edited form as:
Cell. 2018 November 01; 175(4): 962–972.e10. doi:10.1016/j.cell.2018.10.029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/knights-lab/IMP_analyses
https://github.com/knights-lab/IMP_analyses


Summary

Many United States immigrant populations develop metabolic diseases post-immigration, but the 

causes are not well understood. Although the microbiome plays a role in metabolic disease, there 

have been no studies measuring the effects of U.S. immigration on the gut microbiome. We 

collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living 

in Thailand and the U.S., including first- and second-generation immigrants and 19 Karen 

individuals sampled before and after immigration, as well as from 36 U.S.-born European 

American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that 

migration from a non-Western country to the U.S. is associated with immediate loss of gut 

microbiome diversity and function, in which U.S.-associated strains and functions displace native 

strains and functions. These effects increase with duration of U.S. residence, and are compounded 

by obesity and across generations.

Graphical Abstract

Introduction

Previous work has established that diet and geographical environment are two principal 

determinants of microbiome structure and function (De Filippo et al., 2010; Febinia, 2017; 

Gomez et al., 2016; Kwok et al., 2014; Obregon-Tito et al., 2015; Rothschild et al., 2018; 

Schnorr et al., 2014; Yatsunenko et al., 2012). Rural indigenous populations have been found 

to harbor substantial biodiversity in their gut microbiomes, including novel microbial taxa 

not found in industrialized populations (Clemente et al., 2015; Gomez et al., 2016; Obregon-

Tito et al., 2015; Schnorr et al., 2014; Smits et al., 2017; Yatsunenko et al., 2012). This loss 

of indigenous microbes or “disappearing microbiota” (Blaser and Falkow, 2009) may be 

critical in explaining the rise of chronic diseases in the modern world. Despite the frequent 

migration of people across national borders in an increasingly interconnected world, little is 

known about how human migration affects the human microbiome.
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The United States (U.S.) hosts the largest number of immigrants in the world (49.8 million 

or 19% of the world’s total immigrants and approximately 21% of the U.S. population) 

(Department of Economic and Social Affairs, Population Division, 2017). Epidemiological 

evidence has shown that residency in the U.S. increases the risk of obesity and other chronic 

diseases among immigrants relative to individuals of the same ethnicity that continue to 

reside in their country of birth, with some groups experiencing up to a four-fold increase in 

obesity after 15 years (Goel et al., 2004; Lauderdale and Rathouz, 2000). Refugees, in 

particular, appear to be more vulnerable to rapid weight gain (Heney et al., 2014; Hervey et 

al., 2009), with Southeast Asian refugees exhibiting the highest average increases in body 

mass index (BMI) after relocation to the U.S. (Careyva et al., 2015). The Hmong, a minority 

ethnic group from China who also reside in Southeast Asia, make up the largest refugee 

group in Minnesota (22,033 total refugees as of 2014) (Minnesota Department of Health; 

Pfeifer and Thao, 2013). The Karen, an ethnic minority from Burma, have been arriving in 

large numbers in more recent years (Minnesota Department of Health). Overweight status 

and obesity rates are highest among Hmong and Karen compared to other Asian ethnic 

groups in Minnesota (Arcan et al., 2014; Franzen and Smith, 2009; Mulasi-Pokhriyal et al., 

2012; Dawson-Hahn et al., 2016). Western diet acculturation, previous exposure to food 

insecurity, and physical inactivity have been identified as contributing factors (Franzen and 

Smith, 2009; Mulasi-Pokhriyal et al., 2012) although they do not fully explain risk of 

obesity.

The gut microbiome plays a critical role in host metabolism and is heavily influenced by an 

individual’s long-term diet (Hildebrandt et al., 2009; Wu et al., 2011), and can also respond 

quickly to dramatic dietary changes (David et al., 2014; Turnbaugh et al., 2009a). Hence, the 

gut microbiome offers an important window into the consequences of diet and lifestyle 

changes associated with human migration. To study the short- and long-term impact of 

migration on the microbiome, we measured gut microbiomes and dietary intake from 

Hmong and Karen immigrants and refugees (henceforth referred to as immigrants) in cross-

sectional and longitudinal cohorts undergoing relocation to the U.S., stratified by BMI (high, 

≥25 and low, <25). A first-generation immigrant group (foreign-born U.S. residents) 

included individuals with duration of U.S. residence ranging from a few days to more than 

40 years., allowing us to test for changes in the gut microbiome associated with long-term 

U.S. residence. We included second-generation Hmong immigrants (born in the U.S. to first-

generation immigrants) to determine whether the effects of U.S. immigration were 

compounded across generations by birth in the U.S. Finally, we followed a unique 

longitudinal cohort of 19 Karen refugees for up to 9 months beginning immediately before 

or after arrival in the U.S to measure the short-term effects of U.S. immigration.

Results

Assembly of a multi-generational Asian-American immigrant cohort

We recruited 514 healthy Hmong and Karen female individuals (aged 18–78, see Methods 

for full exclusion criteria) who either (1) were living in Thailand (HmongThai, KarenThai; n 

= 179), (2) were born in Southeast Asia and had moved to the U.S. (Hmong1st, Karen1st; n 

= 281), or (3) were born in the U.S. and whose parents were born in Southeast Asia 
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(Hmong2nd; n = 54) (Figure 1A). We also recruited healthy European American female 

individuals to serve as U.S. controls (Controls; n = 36) (Figure 1A). We limited our study to 

women based on insight from our Hmong community advisory board that substantially more 

Hmong women than men were relocating to U.S. Participants in each sample group were 

recruited into lean or overweight/obese body mass index (BMI) class stratifications (BMI < 

25 or BMI ≥ 25, respectively) (Table S1). We recruited eligible individuals throughout the 

Minneapolis-St. Paul metropolitan area in Minnesota, and at two locations in Thailand: a 

rural village in Chiang Mai province (Khun Chang Khian), and a refugee camp in Tak 

province (Mae La) (Figure S1A) in 2016 and 2017.

Bilingual-bicultural research teams collected migration and medical histories (Table S2), 

anthropometrics (weight, height, waist circumference), 24-hour dietary recalls, and a single 

stool sample from all participants. Karen participants who were about to leave Thailand for 

the U.S. or who had arrived in the U.S. within 2 months were invited to participate in a 

longitudinal sub-study in which 24-hour dietary recalls and stool samples were collected 

monthly for 6 months (Figure 1A). We collected a total of 673 stool samples comprising 531 

single- and 142 multiple-time-point collections. Consistent with the previously observed 

high rate of obesity in U.S. immigrants (see Introduction), obesity prevalence relative to 

overweight status in our cohort increased after a decade in the U.S. in the Hmong1st group 

(Chi-square test statistic = 5.23, P = 0.022) (Figure 1B). There was not a sufficient number 

of Karen subjects with long-term U.S. residence to test for changes in prevalence of obesity.

To be able to associate gut microbiome variation with dietary intake, we collected 24-hour 

dietary recalls from all participants and analyzed macronutrient content using the United 

States Department of Agriculture (USDA) SuperTracker food record system (Britten, 2013; 

United States Department of Agriculture Agricultural Research Service) and published 

literature. We utilized the hierarchical format of food codes derived from the USDA’s Food 

Nutrient and Database for Dietary Studies (FNDDS) to categorize foods into a tree structure 

where more closely related foods were grouped together (Figure 1C). These groupings 

allowed us to share statistical strength across closely related foods to complement dietary 

analysis of macronutrients, much in the way that phylogenetic beta-diversity analysis 

complements taxonomy-based profiles of microbiomes. Foods reported by participants that 

were not found in any USDA database (n = 72, Table S3) were manually inserted into the 

hierarchical food tree, allowing us to account for all foods reported by all participants. We 

confirmed our ability to discriminate between the Karen1st, Hmong1st, and Hmong2nd 

group diets using tree-based distances (Figure S1B), identifying a stark increase in the 

variety of foods eaten by second-generation Hmong relative to Hmong in Thailand (Figure 

1C) (t-test of phylogenetic diversity P = 4.828e-10).

U.S. immigration is associated with loss of native gut microbiome species

We performed amplicon-based sequencing of the 16S rRNA gene V4 region on 550 stool 

samples (one sample per participant). Principal coordinates analysis (PCoA) of unweighted 

UniFrac distances (Lozupone et al., 2011) revealed that Hmong and Karen harbor distinct 

gut microbial compositions regardless of country of residence, yet their microbiomes 

converge toward European American microbiomes after relocating to the U.S. (ANOSIM 
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R=0.25, P=0.001), with second-generation Hmong and European American microbiomes 

sharing nearly identical cluster centroids (Figure 2A). Interestingly, all U.S. immigrant 

groups had higher interindividual variation than their Thai counterparts (t-test Hmong1st vs. 

HmongThai P = 1.2e-12; Hmong1st vs. HmongThai P = 6.5e-4; Karen1st vs. KarenThai P = 

4.9e-37). The first-generation immigrants with the most perturbed microbiomes (most 

distant tertile from Thai groups) had both higher age (t-test P = 0.0013) and longer time in 

the U.S. (t-test P = 0.00079) than those with the least perturbed microbiomes (least distant 

tertile from Thai groups).

Microbial diversity and richness were highest in Thailand and decreased with each 

generation of residence in the U.S. (Tukey’s HSD, p < 0.01, Figure 2B). As in other studies 

(Sze and Schloss, 2016; Turnbaugh and Gordon, 2009), we found that lower phylogenetic 

diversity was associated with obesity across all major study groups (unbalanced two-way 

ANOVA, P = 0.0044, Figure 2B), even after stratification by ethnicity (Tukey’s HSD, p < 

0.01, Figure S2A). Furthermore, we observed a consistent loss of certain native bacterial 

operational taxonomic units (OTUs) among first-generation Hmong (Figure 2C). Although 7 

of the 10 most prevalent OTUs found in HmongThai were also found at similar levels in 

Hmong1st, others such as otu1812

(Faecalibacterium prausnitzii) incurred a 45% loss in prevalence (Fisher’s exact test, FDR-

corrected q = 3.05E-14) (Table S4). Prevalence-abundance curve analysis showed that many 

OTUs that were highly prevalent (> 75% prevalence) in Thai-resident individuals had both 

decreased abundance and prevalence in 1st-generation U.S. residents (paired t-test, area 

under the prevalence-log-abundance curve, HmongThai vs. Hmong1st, P < 2.2×10−16) 

(Figure 2D). 28 OTUs incurred at least a 50% loss in prevalence among first-generation 

Hmong, with more than half of them belonging to the genus Prevotella (Table S4).

Bacteroides strains displace Prevotella strains across generations in the U.S.

The Western-associated genus Bacteroides increasingly displaced the non-Western-

associated genus Prevotella across generations in the U.S. (Figure 3A). The ratio of 

Bacteroides to Prevotella was lowest in Thailand-resident individuals, highest in U.S.-born 

European Americans, and increased in a stepwise fashion from first-generation Karen, to 

first-generation Hmong, to second-generation Hmong (unbalanced two-way ANOVA, 

Resident Continent P=3.4e−13, Birth Continent P=0.00085, Ethnicity P=5.5e−12). This 

progression corresponded with the time that these groups had spent in the U.S.

Using deep shotgun metagenomics on 55 samples (mean 22,406,875 reads/sample) from 

Hmong in Thailand, newly arrived Karen, long-term (> 30 years) U.S. resident Hmong, and 

Controls, we profiled strain-level variation within Bacteroides and Prevotella. We aligned 

shotgun metagenomic sequences against all 256 Bacteroides genomes and 153 Prevotella 
genomes in RefSeq version 87 (O’Leary et al., 2016), retaining any strains with at least 50% 

genome coverage in at least one sample. We found that U.S. Controls had varied Bacteroides 
strain profiles, while those with Prevotella had only a single strain of P. copri (Figure 3B). 

Conversely, Thailand-based individuals carried up to 4 strains of Prevotella, with low 

abundance and generally low genomic coverage of Bacteroides strains, possibly due to lack 

of related strains in the database. Long-term U.S.-resident Hmong displayed an intermediate 
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profile, carrying a variety of Bacteroides strains and, in several individuals, multiple 

Prevotella strains. Prevalence-abundance curves for the Bacteroides and Prevotella strains 

with the largest change in overall prevalence between HmongThai and Hmong1st showed 

marked loss of Prevotella strains accompanied by an expansion of pre-existing low-

abundance Bacteroides strains following U.S. immigration (Figure S2B).

U.S. immigrants lose enzymes associated with plant fiber degradation

We identified differences in functional pathways (Abubucker et al., 2012) between 

HmongThai and long-term U.S. resident Hmong1st (> 30 years residence) using shotgun 

metagenomics data (ANOVA, FDR-corrected q < 0.10, Figure S3A). First-generation 

Hmong harbored microbiomes with increased capacity for sucrose degradation, glycerol 

degradation, glucose/xylose degradation, and glucose fermentation to lactate, potentially 

related to increased consumption of more sugary foods, although most sucrose and glucose 

would not be expected to reach the lower GI tract (Dahlqvist and Thomson, 1963). In 

HmongThai, we found an enrichment of pathways relating to the degradation of complex 

carbohydrates, including β-(1,4)-mannan degradation and starch degradation (Flint et al., 

2012). In order to better understand the substrates degraded by these pathways that either are 

lost or below the detection limit in U.S. immigrants, we assembled the shotgun data into 

scaffolds and annotated carbohydrate-degrading enzymes (CAZymes) (Lombard et al., 2014; 

Yin et al., 2012). We found significant shifts in abundance of 58 CAZymes across the 

HmongThai, Hmong1st, and Control groups (Kruskal-Wallis test, FDR-corrected q < 0.05, 

Figure 3C), including three beta-glucan-targeting glycoside hydrolases (GH17, GH64, 

GH87) that were highly abundant in the Thailand group but almost entirely unobserved in 

the U.S. groups. Loss of these glycoside hydrolases may be associated with loss of dietary 

fiber sources that promote persistence of the organisms that harbor these enzymes, reducing 

the ability of the microbiota to degrade these dietary fibers.

These 3 glycoside hydrolases predominantly originated from Prevotella copri (42 ± 11.1%, 

Figure S3B), supporting the hypothesis that loss of Prevotella strains following U.S. 

immigration drove loss of plant fiber degradation capability. We also observed a loss of GH5 

and GH26 glycoside hydrolases from HmongThai to Hmong1st and U.S. controls, which 

indicates a loss of cellulose, beta-mannan and possible xyloglucan degradative potential. 

Beta-mannans are present in seeds, kernels, and corms, such as palm (Subrahmanyan et al., 

1956), coconut (Kooiman, 1971), and konjac (Pangsri et al., 2015), and xyloglucan is found 

most abundantly in tamarind (Mishra and Malhotra, 2009), which, interestingly, are food 

ingredients prevalent in Southeast Asia. The loss of glycoside hydrolases for degrading 

cellulose, a plant cell-wall component, ws another indication that the microbiota of post-

immigration individuals had lost some of their ability to degrade plant-derived fibers (El 

Kaoutari et al., 2013). These findings parallel previous findings in a mouse model 

demonstrating that the microbiomes of mice deprived of dietary fiber lost the capability to 

produce certain glycoside hydrolases (Sonnenburg et al., 2016).

Dietary acculturation partly explains microbiome acculturation

We observed significant differences across study groups in the consumption of 

macronutrients commonly associated with a Western diet: sugars, fats, and protein 
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(unbalanced two-way ANOVA, p < 0.01, Figure 4A, Figure S4). There were no significant 

associations between fiber content and the microbiome, possibly due to the many 

uncharacterized polysaccharides present in different foods. PCoA of diet-based unweighted 

UniFrac (Lozupone et al., 2011) revealed distinct separation by sample group (ANOSIM 

R=0.29, P=0.001, Figure 4B) and a gradient of dietary acculturation along PC1 (Table S6). 

First- and second-generation Hmong had similar food choice profiles (Figure 4B), while 

U.S. controls shared few foods with other groups and consumed almost tenfold less white 

rice than other groups (Figure S5). Although the microbiomes of U.S. control and second-

generation Hmong clustered together (Figure 2A), their diets did not (Figure 4B).

Overall dietary profile was significantly associated with overall microbiome profile across 

individuals (Procrustes test P=0.001, n=999 permutations) (Figure S5C), but constrained 

ordination of the microbiome by the first 5 principal coordinates of diet variation revealed 

that diet explained a relatively small fraction (16.8%) of the total variation explained in the 

microbiome PCoA (Figure 4C). Thus, we found that diet was likely not the sole contributor 

to the observed gut microbiome changes in our cohort, although it is possible that dietary 

variation explains substantially more microbiome variation in this cohort than we are able to 

determine due to our limited knowledge of precise polysaccharide and other nutrient content 

of the foods, and due to complex individualized diet-microbiome interactions.

Gut biodiversity decreases according to duration of residence in the U.S.

After finding that U.S. residence was associated with a major shift in dominant taxa in the 

microbiome (Figure 3A), we decided to test whether U.S. residents experienced more 

profound changes in microbiome composition the longer they lived in the U.S. In a PCoA of 

unweighted UniFrac microbiome-based distances, we found that time spent in the U.S. was 

strongly correlated with the first principal coordinate axis (⍴ = 0.62, p < 2.2e-16, Figure 

5A). Conversely, gut biodiversity, as measured by Faith’s phylogenetic diversity, was 

negatively correlated with PC1 (⍴ = −0.34, p < 3.19e-09, Figure 5B), even while controlling 

for BMI in the Hmong (multiple linear regression, Years in US β = −0.18, P = 0.0275, 

Figure 5C). We note that age was highly correlated with years in the U.S. in the Hmong1st 

group (Pearson correlation ρ = .444, P = 4.5e−9), and therefore age is also strongly 

correlated with loss of diversity (multiple linear regression, Age β = −.38, P = 2.2e−6). Age 

was not significantly correlated with diversity in any of the other groups (Pearson correlation 

HmongThai P = .065, Hmong2nd P = .79, Control P = .37). Thus, we found evidence that 

increased duration of U.S. residence is associated with decreased microbiome diversity, but 

that further study is needed to separate the effects of age and duration of U.S. residence.

Prevotella displacement continues for more than one decade

The longer immigrants spend living in the U.S., the more their microbiomes compositions 

diverge from their Thai counterparts and converge toward European Americans (Spearman 

correlation, ρ = −0.41, P = 1.3e−12 and ρ = 0.35, P = 1.2e−09, respectively) (Figure 6A), 

with continued displacement of Prevotella with Bacteroides (Spearman’s correlation, ρ = 

0.44, P = 8.76e-15, Figure 6B) over time. We confirmed that this significant association 

persisted after stratifying the first-generation immigrants by ethnicity, despite the shorter 

time frame of U.S. residence in first-generation Karen (Spearman’s correlation, Hmong ρ = 
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0.47, P = 8.16e-19; Karen ρ = 0.19, P = 0.023, Figure 6B inset). As in the case of diversity 

above, we note that age is highly correlated with years in the U.S.. However, we used the 

European American group as a control group to test for association of age with similarity to 

the HmongThai reference group and found no association (P = 0.57) (Figure S6A), and the 

B:P ratio in first-generation immigrants was significantly associated with years in the U.S. 

regardless of age (multiple linear regression, Years in US β = 0.096, P = 0.0094; Age β = 

0.039, P = 0.0065) (Figure S6B). These findings show that changes to the dominant 

members of the gut microbiome begin during the first decade of U.S. residence, and 

continue for multiple decades.

Microbiome Westernization begins within 9 months after immigration

To understand whether changes in the gut microbiome can be detected immediately after 

relocation to the U.S., we examined the gut microbiomes of 19 newly arrived Karen over 

their first 6–9 months of U.S. residence. Within this short time frame all but one participant 

gained weight (paired t-test, P=8.3e-05, Figure 7A), and protein consumption increased 

(paired t-test, FDR-adjusted q=0.048, Figure 7B), while the total variety of foods consumed 

decreased (paired t-test, P=0.017, Figure 7C), suggesting a period of acclimation to newly 

available foods. This is in contrast to the Hmong1st group whose diet diversity tended to 

increase following U.S. immigration (Figure S7B). Hmong participants’ diets may be more 

acculturated due to the longer duration of residence of the Hmong community (mean time 

U.S. residence 20.2 years among study participants) when compared to the Karen 

community (mean time U.S. residence 1.9 years among study participants). Hmong1st diets 

tend to be more similar on average than the Karen1st diets to the European American diets 

(t-test of mean tree-based diet distance to European American group P = 0.028). We again 

observed the displacement of Prevotella by Bacteroides (paired t-test, P=0.0013, Figure 7D) 

within this longitudinal cohort, in many cases involving a ten-fold increase in the 

Bacteroides-Prevotella ratio, indicating that microbiome westernization begins immediately 

after arrival to the U.S.

This longitudinal cohort also included six Karen participants from whom we collected 

samples in Thailand, prior to their relocation to the U.S. Using deep shotgun metagenomics 

sequencing on 13 samples from these 6 participants, we found that Prevotella and 

Bacteroides strain profiles remained largely stable over 6 months but sometimes underwent 

substantial changes (subject highlighted in blue, Figure 7E). We observed in general that 

relocating to the U.S. induced a variety of short-term gut microbiome responses including 

disruption to the gut microbiome immediately after arrival in two subjects (ID.273 and ID.

304), expansion of opportunistic pathogens (ID.305), gut disruption several months after 

arrival (ID.275), and stability (ID.274, ID.308) (Figure 7F). Thus, we found that short-term 

responses to immigration of overall microbiome composition were variable across 

individuals, but the displacement of dominant native taxa with dominant U.S. taxa begins 

within 6 to 9 months of U.S. residence.
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Discussion

This study represents the first large cohort study of the effects of migration from a non-

Western country to a Western country on the human gut microbiome. In multi-ethnic, multi-

generational cohorts of immigrants and refugees, we observed that gut microbiome diversity, 

function, and strain composition are strongly impacted by U.S. immigration and that both 

short-term and long-term U.S. residence as well as being born in the U.S. shift an 

individual’s microbiome along an axis toward a more Westernized state. Even a short period 

of residence in the U.S. was sufficient to induce pronounced increases, in some cases over 

ten-fold, in the ratio of Bacteroides to Prevotella. Metagenome assembly showed that the 

observed loss of Prevotella strains was associated with loss of carbohydrate-active enzymes 

dominant in the gut microbiota, including a near-complete loss of certain beta-glucanases 

and other glycoside hydrolases that break down specific dietary fibers. Previous studies have 

demonstrated intergenerational effects of microbiome perturbations in animal models. These 

include loss of microbiota carbohydrate degradation function following removal of dietary 

fiber (Sonnenburg et al., 2016) and intergenerational loss of diversity following antibiotic 

perturbation (Schulfer et al., 2018). The data presented here extend these findings to humans 

by providing evidence that compounded intergenerational loss of taxonomic and functional 

diversity is occurring in U.S. immigrant populations, supporting the model of disappearing 

human microbiota proposed by Blaser and Falkow (Blaser and Falkow, 2009).

We also performed extensive analysis and modeling of differences in dietary intake, as diet 

is known to be a strong driver of microbiome variation (Bokulich et al., 2016; David et al., 

2014; Muegge et al., 2011). Although we observed clear patterns of dietary acculturation 

associated with U.S. residence, dietary variation only partly explained microbiome variation 

across individuals. Interestingly, the diets of second-generation immigrants remained quite 

distinct from the Controls, while their microbiomes do not. It is possible that different diets 

are driving the microbiome toward a similar state; an alternative explanation is that a limited 

set of metabolic capabilities in the microbiome are transmitted from one generation to the 

next, resulting in decreased overall functionality with each successive generation, consistent 

with the “disappearing microbiota” model.

This study has several limitations. Immigration-related microbiome changes are likely 

driven by a combination of diet and other factors associated with adjustment to life in the 

U.S, and most of these factors were not examined in the context of this study. These include 

changes in exposure to stress, exercise, municipal drinking water, antibiotics, and treatment 

with antiparasitics. In addition, our study design did not allow us to test directly whether 

immigration causes the observed changes in the microbiome, nor whether changes in 

microbiome are directly contributing to the high incidence of obesity in U.S. immigrants.

Our findings demonstrate that U.S. immigration is associated with profound perturbations to 

the gut microbiome, including loss of diversity, loss of native strains, loss of fiber 

degradation capability, and shifts from Prevotella dominance to Bacteroides dominance. 

These changes begin immediately upon arrival, continue over decades of U.S. residence, and 

are compounded in obese individuals and in second-generation immigrants born in the U.S. 

These results improve our fundamental understanding of how human migration affects the 
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microbiome and underscore the importance of considering the impact of the gut microbiome 

in future research into immigrant and refugee health.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dan Knights (dknights@umn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study setting, population, and recruitment—Our inclusion criteria included 

individuals who were Hmong or Karen, female, at least 18 years old, and either were born 

and are currently living in Thailand, were born in Southeast Asia and moved to the U.S., or 

were born in the U.S. but whose parents were born in Southeast Asia. Our inclusion criteria 

for controls included European American females at least 18 years of age who were born in 

the U.S. and whose parents and grandparents were also born in the U.S. Our exclusion 

criteria consisted of use of any antibiotics in the previous 6 months, current use of probiotic 

supplements, known presence of gastrointestinal, cancer, immunodeficiency or autoimmune 

disorders, adults lacking capacity to consent, or pregnancy. Additionally, control subjects 

could not have traveled outside of the U.S. within the last 12 months. We recruited using 

multiple methods which included flyers, emails, social media, oral presentations, tabling, 

letters followed by phone calls to West Side Community Health Services (West Side) 

patients who met criteria, and by word of mouth. We recruited throughout the Minneapolis-

St. Paul metro area at local community centers, faith-based organizations, adult education 

centers, health care centers, and health fairs. We recruited in Thailand at Khun Chang Khian 

(KCK), a rural Hmong village located one hour from Chiang Mai city, as well as from Mae 

La (ML) Camp, a Burmese refugee camp in Tak province located on the Myanmar-Thailand 

border (Figure S1). Interested subjects were then screened and interviewed privately or as a 

group, as preferred by the participants. Interviews and body measurements were conducted 

by trained Hmong and Karen community researchers and a graduate student researcher. This 

study was approved for human subject research by the University of Minnesota Institutional 

Review Board (1510S79446), and the Thailand-based portion of the study was additionally 

approved for human subject research by the Chiang Mai University Institutional Review 

Board (475/2015) and the Chiang Mai Public Health Office (0032.002/9930). Informed 

consent was obtained from all subjects.

Community-based Research methods—This project used a community-based 

participatory action research (CBPAR) approach, with a multidisciplinary team composed of 

academic researchers, Hmong and Karen community researchers, and staff from the Somali, 

Latino and Hmong Partnership for Health and Wellness (SoLaHmo). SoLaHmo is a multi-

ethnic, community-driven CBPAR program of West Side Community Health Services, Inc., 

whose mission is to build upon the unique cultural strengths of ethnic communities to 

promote health and wellness through research, education and policy. All SoLaHmo members 

are trained in qualitative research processes using a previously developed training 

curriculum (Allen et al., 2011). In addition, all phases of our project were further guided by 
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community advisory boards (CABs) composed of Hmong and Karen health professionals 

and community experts. The study design, recruitment methods and strategies, and 

dissemination of results were developed in partnership with both academic and community 

researchers, and through multiple discussions with the CABs. As noted in Results, we 

learned from the Hmong CAB and research team members that substantially more Hmong 

women than men were relocating to U.S. in recent years. Thus, to ensure feasibility of 

recruitment for this study we limited our population to women. In Thailand, we used a 

modified CPBAR approach in that Thai community researchers were members of the 

communities that we worked with, and were trained with qualitative research methods, 

recruitment, and sample and data collection, but were not directly involved with study 

design. We note that Hmong refugee camps have long been closed (Bureau of Population, 

Refugees and Migration, 2004), hence Hmong in Khun Chang Khian are not refugees but 

serve as acceptable pre-immigration representatives available for US-based Hmong.

Cross-sectional specimen and data collection—For U.S. sample collection, 

research team members obtained informed consent and conducted interviews in the 

participants’ preferred languages (English, Hmong, or Karen), and recorded participants’ 

responses onto an English paper survey. Weights were measured using standard electronic 

scales, heights were measured against a wall using a pre-positioned measuring tape, and 

waist circumferences were measured with a tape measure at the uppermost lateral border of 

the iliac crest (Center For Disease Control, 2014). 24-hour dietary recalls were conducted 

using a multiple pass system (Tippett et al., 1999) with food models and measuring cups and 

spoons for portion size estimations. Participants were provided with a stool collection kit 

and instructions describing how to collect a stool sample. Stool samples were collected into 

preservative (see below) and were either returned to the research staff by mail or were stored 

at room temperature for up to 5 days before they were collected by the research team.

Procedures for consent, interviews, anthropometrics, and stool sampling in Thailand were as 

described above for the cross-sectional specimen and data collection. 24-hour dietary recalls 

and sample collections were conducted as described previously. Stool samples from KCK 

were transported on dry ice then placed in a −20C freezer for 2 days then transferred to a 

−80C freezer. Stool samples from ML were placed in a −20C freezer for up to 8 hours then 

transferred to a −80C freezer. All samples collected in Thailand were shipped overnight on 

dry ice from Thailand to the U.S., and stored in a −80C freezer in the U.S.

Research team members instructed participants in stool collection, using an instructional 

video, written visual instructions, and verbal reinforcement. Participants placed their stool 

sample onto a FecesCatcher (Tag Hemi VOF) and 1 gram was collected using a sterile swab 

into a 1.5 ml cryogenic tube pre-filled with 900 ul of RNALater™ and mixed thoroughly. 

Larger samples (longitudinal first and last month samples) were collected using a Sarstedt 

Inc. 80.9924.014/CS500 tube and scoop without mixing or RNALater. Large samples 

collected in the U.S. were aliquoted into 1.5 ml tubes with and without 50% glycerol upon 

arrival and stored at - 80C. Large samples collected in Thailand were stored at −80C until 

arrival to the U.S., at which point they were thawed over ice, aliquoted, and stored in the 

same manner.
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Longitudinal specimen and data collection—Procedures for consent, interviews, 

anthropometrics, and stool sampling were as described above for the cross-sectional 

specimen and data collection. Once per month over six months, 24-hour dietary recalls were 

conducted as described previously. Month 1 and 6 samples were stored in a home freezer 

and picked up within 24 hours of stool collection. These samples were transported with an 

ice pack and immediately placed in a −80C freezer. Month 2–5 samples were stored in 

preservative (see below), mailed to the research team in prepaid mailers at room 

temperature, and placed in a −80C freezer upon receipt.

METHOD DETAILS

Dietary data processing—De-identified survey data was entered into an electronic 

spreadsheet. Foods and portions from 24-hour dietary recalls were entered into the USDA 

SuperTracker system (Britten, 2013). Foods that were not found in the USDA database were 

studied individually (Speek et al., 1991) for macronutrient content and entered in as custom 

foods. SuperTracker macronutrient and food grouping summaries, as well as foods and their 

respective portions were downloaded directly from the SuperTracker website or using 

custom Python (van Rossum and Drake, 2011) scripts. Foods and portions were mapped to 

the SuperTracker and USDA databases to obtain respective food and portion identification 

numbers; food and portion identification numbers were used in tree-based food analysis. 

Custom foods not in the USDA database were manually assigned appropriate existing or 

new food identification numbers by group consensus. Micronutrients were excluded from 

dietary analyses due to the high number of custom foods with limited information on 

micronutrients.

16S ribosomal RNA gene DNA sequencing—All fecal samples were submitted to the 

University of Minnesota Genomics Center (UMGC) for DNA extraction, amplification, and 

sequencing. 16S ribosomal rRNA gene sequences were extracted and amplified following 

the UMGC-developed protocol(Gohl et al., 2016).

Shotgun metagenomics DNA sequencing—Shotgun DNA sequencing was 

performed on the Illumina HiSeq platform. All fecal samples were submitted to the UMN 

Genomics Center for DNA extraction, amplification, and sequencing. Amplification, 

quantification, and normalization of extracted DNA was performed using the Illumina 

NeoPrep Library System. A HiSeq 2×125 cycle v4 kit was used to sequence samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

16S sequencing analysis—We trimmed and processed all 16S marker-gene sequencing 

data for quality using SHI7 (Al-Ghalith et al., 2018) and picked de novo operational-

taxonomic units (OTUs) as follows. We first filtered for reads with at least 100 exact 

duplicates as representative sequences, and assigned taxonomy by alignment at 0% to the 

NCBI RefSeq 16s reference database (O’Leary et al., 2016) using the BURST (Al-Ghalith 

and Knights, 2017) OTU-picking algorithm in CAPITALIST mode, which ensures optimal 

alignment of sequences and minimizes the set of aligned reference genomes. All original 

sequences were then re-aligned with BURST (Al-Ghalith and Knights, 2017) in 

CAPITALIST mode at 98% identity against this representative set, resulting in 93.54% of all 
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available sequences aligned. Singleton OTUs and samples with depth less than 2,143 were 

removed using the Quantitative Insights Into Microbial Ecology (QIIME) software package 

(Caporaso et al., 2010). Using QIIME, we measured within-sample biodiversity (alpha 

diversity) with rarefied OTU tables (at 2,143 sequences/sample) using whole-tree 

phylogenetic diversity (Faith, 1992) and a custom generated phylogeny constructed with the 

representative sequences using aKronyMer (Al-Ghalith and Knights, 2018). To quantify 

differences in composition between subjects, we calculated the phylogeny-based UniFrac 

distance (Lozupone et al., 2011) between all pairs of samples. To visualize between-subject 

differences (beta diversity) and to obtain principal components for subsequent statistical 

testing, we performed dimensionality reduction using principal coordinates analysis 

(Caporaso et al., 2010). Aitchison’s distances were calculated by first imputing zeros from 

an abundance OTU table, then applying a centered log ratio transform using the 

robCompositions R package (Pawlowsky-Glahn and Buccianti, 2011). To enable tests for 

shifts in the relative abundances of Bacteroides and Prevotella, we collapsed the reference-

based OTUs according to taxonomy at the genus level. P-values, sample numbers, and 

names of statistical tests are provided in the main text and figure legends for Figures 2A, 2B, 

3A, 3C, 4A, 4B, 5A-C, 6A-C, 7A-D.

Shotgun metagenomics analysis—Shotgun metagenomics sequences were identified 

at the species level via genomic alignment against a custom database created from aligning 

human samples from various public datasets against the comprehensive NCBI RefSeq 

database (Tatusova et al., 2013) release 87, and all matched bacterial species, as well as all 

species in matched representative genera, were included from NCBI RefSeq database 

(Tatusova et al., 2013) release 87. Genome coverage estimates were calculated using the 

bcov utility from BURST (Al-Ghalith and Knights, 2017). Functional annotations were 

obtained using the HUMAnN2 (Abubucker et al., 2012) pipeline with UniRef50 (Suzek et 

al., 2015). Resulting functional pathways were mapped to and colored by the top-level 

categories of the MetaCyc (Caspi et al., 2008) ontology. CAZyme annotations were obtained 

using metaSPAdes (Nurk et al., 2017), filtered for scaffolds with minimum 1000 bp, then 

further processed with Prokka (Seemann, 2014), dbCAN (Yin et al., 2012) with E-value < 1e

−5, and the CAZy database (Lombard et al., 2014). Taxonomic contributions of 

differentiated glycoside hydrolases were identified as follows: (1) scaffolds that contributed 

to GH17, GH64, GH87 were identified and respective DNA sequences were obtained and 

used as a reference database, (2) shotgun metagenomic reads were quality filtered as 

described previously, (3) quality reads were aligned against the scaffold reference database 

using BURST (Al-Ghalith and Knights, 2017) at 95% identity, (4) quality filtered reads from 

step 2 were aligned with BURST at 98% identity against the previously described custom 

database with taxonomy assigned from the NCBI database, (5) sequences that hit both the 

scaffolds reference and the custom NCBI-based reference were used to construct an OTU 

table.

Dietary data analysis—Food tree visualizations were generated with GraPhlAn (Asnicar 

et al., 2015). Dietary record and food item associations were generated using custom scripts, 

then visualized in Cytoscape (Shannon et al., 2003). Food-Microbiome Procrustes distance 
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association P-values are from the `vegan` implementation in function `protest ()` with 999 

permutations (performed for each of the permuted data structures).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• U.S. immigration is associated with loss of gut microbiome diversity

• U.S. immigrants lose bacterial enzymes associated with plant fiber 

degradation

• Bacteroides strains displace Prevotella strains according to time spent in the 

U.S.

• Loss of diversity increases with obesity and is compounded across 

generations
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Figure 1. Assembly of a multi-generational Asian American cohort
(1A) Experimental design for cross-sectional and longitudinal cohorts. See also Figure S1A.

(1B) Ratios of overweight-to-obese individuals across sample groups and over time in the 

U.S., separated by ethnicity due to differences in time in years.

(1C) Hmong in Thailand (n = 43) and second-generation Hmong (n = 41) (ages 20–40) diet 

diversity, displayed on a tree that groups related foods together. Bars denote unique foods, 

with darkness of the bar showing prevalence of foods reported averaged within HmongThai 

or Hmong2nd. Items highlighted in red denote the most prevalent vegetables, sweets and 
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beverages, grains, and meats reported within sample groups. Full descriptions of foods 

highlighted in red: Coffee, brewed, regular; Carbonated citrus fruit drink; Chinese cabbage 

or Bok Choy family, raw; Rice, white, no salt or fat added; Pork chop, broiled, baked, or 

grilled, lean only eaten; Chicken breast, roasted, skin not eaten. See also Figure S1B.
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Figure 2. Loss of diversity and native bacterial taxa with time spent in the U.S.
(2A) Principal coordinate analysis (PCoA) of unweighted UniFrac distances between 

bacterial communities of cross-sectional participants revealed that phylogenetic variation 

was differentiated by sample group (ANOSIM R=0.25, P=0.001). 95% standard error 

ellipses are shown around Hmong and Karen in Thailand, second-generation Hmong, and 

Controls.

(2B) Alpha diversity of obese and lean individuals across sample groups, in Shannon’s 

Diversity index and Faith’s Phylogenetic Distance (PD). P-values denote significantly 
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different groups using pairwise tests of sample groups without stratification by BMI 

(Tukey’s HSD, p < 0.01). Microbiome diversity is significantly lower in obese individuals 

across all sample groups (unbalanced two-way ANOVA analysis with BMI class and sample 

group as covariates, P = 0.0044). See also Figure S2A.

(2C) Prevalence of operational taxonomic units (OTUs) in HmongThai and Hmong1st, with 

OTUs sorted by prevalence in HmongThai and samples sorted by richness within sample 

group. OTUs shown are found in at least 75% of HmongThai samples (See Table S4 for 

taxonomic assignments, mean group prevalence, and statistics).

(2D) Prevalence-abundance curves of all OTUs present in at least 75% of HmongThai 

samples, plotted separately for the Hmong1st and HmongThai sample groups. See also 

Figure S2B.
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Figure 3. Bacteroides and Prevotella strain diversity and abundances
(3A) Log-transformed ratio of Bacteroides to Prevotella (B/P) relative abundances. U.S. 

residence, U.S. birth, and ethnicity were all significantly associated with B/P ratio 

(unbalanced two-way ANOVA P=3.4e−13, P=0.00085, P=5.5e−12, respectively). 

(KT=KarenThai; HT=HmongThai; K1=Karen1st; H1=Hmong1st; H2=Hmong2nd; 

C=Controls).

(3B) Coverage and relative abundance of Bacteroides and Prevotella strains in 44 samples 

across HmongThai, Hmong1st (who have lived in the U.S. for more than 30 years), and 
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Controls. Strains with genomic coverage > 50% in at least one sample were included. 

Hierarchical clustering of strains and samples within group is based on relative abundances. 

Strains with genome coverage of < 1% within a person are considered not present (not 

plotted). See Table S5 for strain names.

(3C) CAZymes with significantly different relative abundances across HmongThai, 

Hmong1st (who have lived in the U.S. for more than 30 years), and Controls (Kruskal-

Wallis test, FDR-corrected q < 0.05). See also Figure S3.
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Figure 4. Dietary acculturation partially explains microbiome variation
(4A) Comparison of macronutrient consumption across sample groups. Ethnicity is 

significantly associated with calories (P=3.4e−05), sugars (P=0.00023), fat (P=1.3e−07), 

protein (P=3.2e−07), whereas U.S. residency is associated with sugar (P=1.3e−16), fat 

(P=7.1e−24), and protein consumption (P=5.7e−05), and birth continent is only associated 

with Fat consumption (P=0.0081) (unbalanced two-way ANOVA) (HT=HmongThai; 

KT=KarenThai; H1=Hmong1st; K1=Karen1st; H2=Hmong2nd; C=Controls). See also 

Figure S4.
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(4B) PCoA of unweighted UniFrac diet-based distances reveals significant clustering by 

sample group (ANOSIM R=0.29, P=0.001). Dietary acculturation can be seen along PC1 

with Thai-resident groups on the left and European Controls on the right.

(4C) Redundancy analysis (RDA) of the unweighted UniFrac microbiome-distances 

constrained by the first 5 principal coordinates of the PCoA of unweighted UniFrac food-

distances. The resulting RDA explains 16.8% of the total variation explained by PC1 and 

PC2 of the microbiome PCoA (Figure 2A). See also Figure S5.
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Figure 5. Gut biodiversity decreases with time spent in the U.S.
(5A) Unweighted UniFrac PCoA of gut microbiomes of first-generation Hmong and Karen 

participants (N = 281), colored by years spent in the U.S. which ranges from 1 day to 40.6 

years. PC1 is strongly correlated with the amount of time spent in the U.S. (⍴ = 0.62, p < 

2.2e16).

(5B) Unweighted UniFrac PCoA of gut microbiomes of cross-sectional participants 

(N=550), colored by Faith’s Phylogenetic Diversity. PC1 is negatively correlated with 

phylogenetic richness (⍴ = −0.34, p < 3.19e-09).

(5C) In first-generation Hmong, diversity significantly decreases over time in the U.S. 

(multiple regression: Years in US β = −0.18, P = 0.0275; BMI β = −0.05, P = 0.81), but a 
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significant association was not observed in first-generation Karen (Years in US β = −0.17, P 

= 0.71; BMI β = −0.27, P = 0.28).
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Figure 6. Prevotella displacement continues over decades of U.S. residence
(6A) Similarity (1 / Aitchison’s distance) of microbiomes relative to Thai-based groups 

(Spearman’s correlation, ρ = −0.41, P = 1.3e−12) and to Controls (Spearman’s correlation, 

ρ = 0.35, P = 1.2e−09). See also Figure S6A.

(6B) Log ratio of Bacteroides to Prevotella of first-generation groups are significantly 

correlated to years spent in the U.S. (Spearman’s correlation, ρ = 0.44, P = 8.76e-15). 

Significantly correlated trends persist after stratification by ethnicity (Spearman’s 

correlation, Hmong ρ = 0.47, P = 8.16e-19; Karen ρ = 0.19, P = 0.023). (HT=HmongThai; 
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KT=KarenThai; H2=Hmong2nd; C=Controls; 0–40=Years spent in the U.S. by Hmong1st 

and Karen1st). See also Figure S6B.
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Figure 7. Longitudinal microbiome variation during relocation to the U.S.
(7A) Comparison of per-participant changes between first and last months of the study in 

BMI (paired t-test, P=8.3e-05),

(7B) protein consumption (paired t-test, macronutrients adjusted for multiple comparisons 

using false discovery rate < 0.05, P=0.048),

(7C) dietary diversity (Faith’s PD) (paired t-test, macronutrients adjusted for multiple 

comparisons using false discovery rate < 0.05, P=0.017), and

(7D) Bacteroides to Prevotella ratios (paired t-test, macronutrients adjusted for multiple 

comparisons using false discovery rate < 0.05, P=0.0013).

(7E) Bacteroides and Prevotella strain profiles are mostly stable after 6 months. Samples 

(columns) from the same participant are denoted by color, and M1 and M6 correspond to 

Month 1 Sample and Month 6 Sample, respectively. Selected strains are identical to Figure 

3B (at least 50% coverage per sample across N=55 samples, see Table S5).
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(7F) Taxonomic area charts of relative abundances of dominant genera (other taxa not 

shown) in 6 individuals who began the longitudinal study while in a refugee camp in 

Thailand and then continued after relocation to the U.S. First available samples were 

collected 6 to 34 days before departure, and second samples were collected 1 to 6 days after 

arrival to the U.S. See also Figure S7.
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